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A P P R O X I M A T E  M E T H O D  F O R  S O L V I N G  A T W O - D I M E N S I O N A L  

P R O B L E M  OF E L A S T I C I T Y  T H E O R Y  

G. V.  D r u z h i n i n  and N.  M.  B o d u n o v  UDC 531.01; 539.3 

A numerical-analytical method based on approximation by harmonic or biharmonic functions is 
proposed for solving a mixed two-dimensional problem of elasticity theory. This method allows 
one to decrease the geometric dimensionality of the boundary-value problem by reducing it to 
minimization of the boundary residual. The resultant approximate analytical solution satisfies 
all equations of elasticity theory. 

G ene ra l  Scheme  of  t h e  M e t h o d .  Let fl be a multidimensional multiply connected region in ]R n 
limited by a hypersurface F. We consider the general boundary-value problem 

LU(X)=O,  X E f t ,  (1) 

lg(X) = ~(Y),  Y E F, (2) 

where L is the linear vector differential operator and U(X) and ~(Y) are the elements of certain functional 
spaces Rl(fl) and R~(r) [1]. 

We formulate the method of expansion of the solution of the boundary-value problem (1), (2) in terms 
of nonorthogonal functions as follows. Let {t~k(X)}~= ] be a system of the vector functions ~k, which satisfies 
the following conditions: each ~k(X) satisfies Eq. (1) in the domain fl; a new function It~k(Y), where l is 
the operator from the boundary condition (2), is defined on F for each basic function ~k(X); the system of 
functions {~k(Z)}~~ is linearly independent, dense, and full in the spaces C4(F) or L~(r). 

We find the coefficients ak of the best [in terms of C4(I') or L2(r)] expansion of the functions ~(Y) 
with respect to the first N functions of the system {~k(X)}~=l: 

N 
~2(Y) ~ ~ a(g)l~2k(Y). 

k = l  

N 

Then the expression U g ~ ~ a~v)gj~(X) can be considered as an approximate solution of problem (1), (2), 
k = l  

which tends to the exact solution as N ~ oo under the condition of problem correctness. 
The novelty of the present work is that an algorithm of constructing global and local basic functions 

{~k(X)}~~ which satisfy the above conditions, is proposed. The method of obtaining the basic functions 
is applicable for all canonical equations of mathematical physics [2-4]. A reasonable choice of these basic 
functions, which can be orthonormalized, allows one to solve a wide range of problems of mechanics with 
arbitrary boundary conditions. 
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reduces to the solution of the boundary-value problem for the following system of equations (Lam~ equations 
[5]): 

O0 00 
(1 + G) 7z + GV2u + F. = O, (A + G) -~y + a v 2 v  + Fy = 0, (3) 

where (A + G) -- G / ( 1 -  2#), G and # are the  shear modulus and Poisson's ratio, respectively, 0 = O/Ox +O/Oy, 
and ~2 = 02/0x2 + 02/~y2. In problems of the planar stressed state, A is replaced by 11 = 2AG/(A + 2G). In 
the two-dimensional domain fl, we seek a regular solution of system (3), which satisfies the following relations 
at the boundary F: 

ll u = a l l a n l  n t- f l l i U  4- a 2 1 a n 2  4- fl21V = r  12V = a l20"n l  --[- f l l2U n t- a22o'n2 4- f122v = r  (4) 

Here ai/ ,  flij, and r  (i, j = 1, 2) are known functions of the point Y E F and ani are the components of the 
stress vector: 

Here a, = 10 4- 21~Ou/Oz, ay = t0 4- 2#Ov/Oy, and cos (n, x) and cos (n, y) are the direction cosines of the 
external normal to the  boundary at the point  Y E F. 

The specific cases of the boundary-value problem (3), (4) are the  first and second classical boundary- 
value problems of elasticity theory, where ei ther the stresses (/3ij = 0 and aij = 8ij, where 6ij is the Kronecker 
symbol) or the displacements (/3ij -- ~{j and aij = 0) are prescribed at the boundary F, the mixed problem 
in which the stresses are set at some por t ion of the contour F and the  displacements are set at the remaining 
portion, and other  boundary-value problems. Without  loss of generality, we ignore in what follows the mass 
forces F= and Fy [51. 

It is known tha t  the displacement vector u = {u, v}, which satisfies Eqs. (3), can be constructed using 
one of the formulas of the general solutions, for example, using the formula of Papkovich-Neuber [5, 6], which 
has the following form: 

u = ~,  - 0.25(1 - / z ) - '  8(r 4- z ~ ,  4- y@2) Ox ' v = ~2 - 0.25(1 - / ~ ) - I  0('~o + xaPlOy + y~2) (5) 

Here r ~1, and ~2 are funct ionsof  the  coordinates x and y, which satisfy the Laplace equation 

0 2 ~ i  0 2 ~ i  
cgx------ Y + ~ = 0, i = 0, 1, 2. (6) 

The  problem of fullness and generality of the solution to (5) was considered by Ostrosablin and Senashov [6]. 
It can be easily seen that  Eq. (6) allows a group of extension and transfer relative to independent 

variables and a group of extension relative to dependent  variables. Therefore, according to [2, 7-9], invariant- 
group solutions of the Laplace equation can be sought, for example, in the form 

�9 o = ( c l x  + 

where a, Cl, c2, b, and h are arbitrary real numbers.  
Subst i tut ing (7) into (6), we obtain 

c2y 4- h 
= - -  (7) 

ClX + b' 

(clx + b)~-2[(r/2 + D2)9  '' - 2q(a - 1)9' + a ( a  - 1)9 ] = 0, (8) 

where 9' and 9"  are the first and second derivatives with respect to 77, (ClX + b) ~-2 ~ 0, and D 2 = c2/Q . 2  2 
We seek a solution of the differential equation (8) in the form of the series 

9 = ~ akrl k. (9) 
k----O 

Substituting (9) into (8) and equating the  series coefficients at equal powers of ~/, we find the recurrent formula 

ak+2 -- - { ( a  - k)(a - k - 1)/[D2(k 4- 2)(k 4- 1)]}ak, (10) 
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which allows us to express all even coefficients of series (9) in terms of a0 and all odd coefficients in terms of 
hi. 

Thus, series (9) wi th  coefficients de te rmined  by formula (10) and arbi t rary values of a0 and al is the 
general solution of Eq. (8). 

We consider the solutions of Eq. (8) tha t  satisfy the conditions of uniqueness,  continuity, and finiteness. 
It follows from formula (10) that  for a k ~ 0 we have ak+ 2 ~- 0 only if the constant  a takes the values a = k 
and a = k + 1. If these conditions are satisfied, it is possible to obtain finite solutions of Eq. (8) in the form 
of the polynomials P~(r/). 

For k -- 0 and k -= 1, we have a2 -- [ - a ( a  - 1)/(202)]a0 and a3 = [ - ( a -  1)(a - 2)/(6D2)]al.  Let 
a = 1; then we have a2 : 0 and a3 --- 0. In this case, a0 and al can be arbitrary. We choose a0 and al as 
coefficients that  form the initial basis. We obtain the  following polynomials, which are the general solutions 

pa=2__ _ a0(1 - r/2/D 2) --]- air/ (a3 a4 -- 0 pa=l  : a o  "-k a l r l ,  - - - -  . -= of Eq. (8) for different values of a: k=o,1 k=0,2 "" 

for a = 2), pa=3k=~,3 = a0(1 - -3r l2/D 2) § a l ( r / -  T/3/(3D2)) (a4 = a5 = . . .  --- 0 for a = 3), and p,~=4k=o,4 = 

a0(1 - 6r12/D 2 § rl4/D 4) + al(rl - rl3/D 2) (as = a6 . . . .  = 0 for a = 4), . . .  (k = 0, 2, 3 , . . . ,  m). 
Using the principle of superposition of the  solutions due to homogenei ty  and linearity of Eq. (6), we 

write the solution of the Laplace equation as 

N 

 0(x, y) = d (clsx + bs)sP (n) = A0a00 + dx(cllx + bl)(a0  + a11 ) 
s---~l 

-kA2(c12x "t- b2)2[a02(1 - r/2/D 2) -t- al2r/] -k A3(cl3x + b3)3[a03(1 - 3r/2/D 2) 

+al3(r / - -  7?3/(392))] - t - . . .  § AN(a lNX  -[- bN)lVPN(rl), (11) 

where y = (c2sy + h s ) / ( c l s x  § ba) and As are arbitrary coefficients to be determined.  The number of these 
coefficient depends on the  method  of solution of the  boundary-value problem and on the est imate of accuracy 
of the approximate solution. 

Note that  the expressions for the polynomials  P~(r/) depend on the  choice of the parameters a0 and 
al, as in the case of Legendre and Chebyshev polynomials.  For each polynomial ,  these coefficients should be 
chosen so that  the polynomials  P~(rl) have the least difference from zero. In Eq. (11), they are designated by 
a0~ and al~, since they can be different for each polynomial.  The parameters  cl, c2, b, and h in solution (11) 
can also be different for each polynomial P~(r/); therefore, they are denoted by cla, c2a, b~, and ha. These 
parameters are chosen so tha t  the system of linear equations, to which the  initial problem is reduced, is not 
ill-posed. For all N and As ,  function (11) satisfies Eq. (6) in the domain f~, but  not the boundary conditions on 
F. Since only the polynomial  solutions were determined,  we ignored the solutions via transcendent functions 
(for example, for a = k = 0 we have the solution ~ = C1 § C2 arctan r/, etc.). 

Other solutions of Eq. (6) can be obta ined if we seek the invariant solution in the form r = (c2y + 
h)a~(q), where r I = (c lx  -t- b)/(c2y + h). 

Since the harmonic  functions are found in the form of polynomials, we can easily find the conjugate 
harmonic functions using the  Cauchy-Riemann conditions [5]. 

Another me thod  of the formation of new solutions from some known solutions is described by 
Ovsyannikov [7]. This m e t h o d  is not related to finding finite transformations,  but  is applicable only in the 
case of linear homogeneous equations. For these equations, the solutions depending  on parameters generate 
new solutions by means of differentiation with respect to these parameters.  In addit ion,  it is possible to obtain 
new solutions of differential equations if the group of continuous transformations generated by the operators 
Xi is known. Let Uk -- r Y) (k = 1- '~) be the solutions of a linear homogeneous system; then the functions 

Ukk = Xi (Uk  - r y)) vk=~,~(z,y ) 

also form the solution of the  initial system of equations [7]. It is impor tan t  that ,  for the whole system of 
polynomial functions found,  this system is linearly independent  and full in the  space C4(F) or L2(F). 

The proposed a lgor i thm of formation of the basic functions allows one to expand the polynomial 
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representations of the basic functions given in [5, 10, 11]. The resultant harmonic polynomials in Cartesian 
coordinates possess more convenient analytical and computational properties than, for example, the  spherical 
functions. 

Substi tut ing the generalized polynomials (11) into the Papkovich-Neuber function (5), we find the 
unknown coefficients A~ from the boundary conditions (4) using any of the existing methods  [1, 5, 12-141, 
for example, the method  of weighted residuals or the variational method if the problem allows the  variational 
formulation. 

R e d u c t i o n  of  t h e  T w o - D i m e n s i o n a l  P r o b l e m  of  E l a s t i c i t y  T h e o r y  to  t h e  B o u n d a r y - V a l u e  
P r o b l e m  for  a B i h a r m o n i c  E q u a t i o n .  In the  absence of mass forces in It, the introduction of the Airy 
stress function ~(z,y)[51 

02~ 02~ 02qJ 
~rz = Ox2, c r y -  rxy = (12) Oy 2 ' Ox Oy 

allows one to reduce the  mixed problem of elasticity theory to the boundary-value problem for a biharmonic 
equat ion 

04~ 04qr 04~ 
V4~  = ~ + 2 0 x  20y 2 + O y  4 - -  0 in f~, (13) 

< " = i t 1  = = = = (14) 

where s is the variable length of the arc of the  curve F with a piecewise-continuous external normal n(s), 
X(s),  Y(s), u(s), and v(s) are the projections of distributed forces specified on FI and displacements of the 
boundary points at the axis of the Cartesian coordinate system specified on F2 ( r  = F1 U r2), and an~] r and 

~rnu IF are the projections of internal stresses at the boundary points of ft onto these axes: 

: e (o+ IOyl  ) = = d(O  lO:t  ) : o:l . 
In finding the regular solution (stress and displacement fields continuous in the closed domain 12), 

we assume that  the functions X(s) and Y(s) are continuous on F1 and u(s) and v(s) are continuous and 
differentiable on F2 everywhere except for the inflection points of the boundary F [5, 12]. 

Using the stress function found by solving the boundary-value problem (13), (14) and the above 
formulas, we can determine the stresses and displacements at all points of the closed domain f~. The  stresses 
in the  domain 12 are expressed in terms of tIs(x, y) using formulas (12). The  formulas in the explicit form 
(suitable for a computer  manual) ,  which express the field of displacements in a singly connected domain fl in 
terms of the stress function,  can be found in [12]. 

We find biharmonic polynomials using the  algorithm described above. Let expression (7) be the solution 
of Eq. (13), where we use tIs instead of r  Subst i tut ing (7) into (13), we obtain the ordinary differential equation 

(clx + b)a-4[(r# 4 + 202772 + D4)4 ' ' '  - 4 (a  - 3)(773 + D2y)4 ' '  + 2(a - 2)(a - 3)(3772 + 0 2 ) 4  '' 

- 4 ( a  - I ) ( a  - 2)(a - 3)r/~' + a ( a  - t ) ( a  - 2)(a - 3)41 = 0, (15) 

where the primes denote  derivatives with respect to 77 and (clx + b) a-4 7~ 0. 
Substi tuting (9) into (15) and equating the  coefficients of the series at equal powers of r/, we obtain 

the recurrent formula 

ak+4 = ak+2[-2k(k - 1) + 4k(a - 3) - 2(a - 2)(a - 3)]l[D2(k + 3)(k + 4)1 

+ak[-k(k - X)(k - 2 ) ( k -  3) + 4k(k - 1 ) ( k -  2)(c~- 3) - 6 k ( k -  X ) ( a -  2 ) ( a -  3) 

+4k(a  - 1)(a - 2)(a  - 3) - a ( a  - 1)(a - 2)(a - 3)]/[D4(k + 1)(k + 2)(k + 3)(k + 4)1 , (16) 

which allows one to express all even coefficients of series (9) in terms of a0 and all odd coefficients in terms 
of al .  

715 



d) 

32 

16 I 
d) 

32 

16 

1 2 3 xl_ I1| 

q) 

s f %% 
'- 3~ 

1 2 3 y l _  I12 0 0 3 Xlr 3 

/ 
j 

o 1 2 

Fig. 1 

The structure of Eq. (15) allows one to find solutions that satisfy the conditions of uniqueness, 
continuity, and finiteness. It follows from formula (16) that,  for ak r 0 and ak+2 r 0, we have ak+4 = 0 
only if the constant a takes the values a = k + 3 and ~ = k + 2. If these conditions are fulfilled, it is possible 
to obtain finite solutions of Eq. (15) in the form of the polynomials Pff(7/). It can be shown that  for k = 0 
and 1 and a = 3, we have a4 - a5 = a6 = a7 -~ . . .  = 0. In this case, a0, a], a2, and a3 can be arbitrary. We 
choose them as coefficients that  form the initial basis. Using the principle of superposition of the solutions, 
we write the polynomial solution of the biharmonic equation (13) (similarly to the solution of the Laplace 
equation) in the expanded form 

N 
q2(x,y) -= ~_, Aa(cltrX + b~)aP~(71) = Aoaoo + Al(CllX + bl)(aol + allr/) 

~t . ~  O 

+A2(c12x + b2)2[a02(1 - r/2) + a12~7] "4- Aa(clax + ba)3[ao3 + a lar /+  a23r/2 + a33r/3] 

+A4(cl4x + b4 )4 [a04 ( l -  ~ 4 ) A -  al4T/ nL a24 <~/2 r/4 3D2)  + a34r/3] + Ah(clhx+ b5)5 [a05 (1 - -~-~-)5;74"~ 

7/5 +al5 (r/- 5~4) + a25 (7/2- ~2)+ a35(~ 3 5~-2) ] -~ A6(c16x-4-b6)6 In06 (1 - 15r/4D----~A--~)2~6"~ 

-3t-a16 ( r / - - ~ 4  ) -1- a26 (/] 2 2/'14 /-16 V 3'1 '/1 (17) ~ 2  ) ] + " " -F AN(ClNX + 

where = (c2.y + h )/(Cl X + 
It is important to note that  function (17) satisfies Eq. (13) in the domain fl for all N and A~. Using 

the results presented above, we find other polynomial solutions of the biharmonic equation. The algorithm 
proposed allows one to considerably extend the polynomial representations of the basic functions for the 
biharmonic equation [5, 10, 12]. The boundary-value problem for a biharmonic equation relative to stress 
functions is solved in a similar manner. 

N u m e r i c a l  R e a l i z a t i o n  of  t he  M e t h o d .  Polynomial basic functions of the type (11) or (17) have 
the following advantages: they are not restricted to a specific domain ~ (the approximation of the solution 
is constructed only for the boundary F, since the polynomials are the exact solutions in the domain ~) and 
ensure a uniform convergence of the approximate solutions to the exact solution both on the boundary F 
and in the domain fl (according to the Weierstrass, Garnak, and Margelyan theorems [10, 12, 15-17]). These 
functions are convenient in computations. An important  feature of the approach described is the possibility 
of evaluating the error of the approximate solution inside the domain, which is based on the difference in the 
boundary conditions. 

As an example, we consider an approximate solution of Eq. (6), which satisfies the following boundary 
conditions at the quarter of the circumference x 2 + y2 = 16 (boundary F): ~(x, y) = 32 - x4/8 on F1 (y = 0), 
r  y) = 32 - y4/8 on F2 (x = 0), and r  = x2y 2 on F3 (y = (16 - x2) 1/2) [13]. Note that the 
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exact solution of this problem is the function r = x2y 2 + [256 - (z 2 + y2)2]/8. We use the approximate 
solution (11), which satisfies the Laplace equation inside the domain. The results of the exact and approximate 
solutions at the boundary F (F = F1 + F2 + F3) for a0a = ala = Cla = c2a = 1, ba = ha = 6, and different 
number of collocation points N are shown in Fig. 1. The analytical solution is shown by the solid curve, 
and the results obtained by the method of collocation by the dashed (N = 7) and dot-and-dashed curve 
(N = 12). The circles and crosses indicate the exact and approximate solutions, respectively. The accuracy 
of the approximate solution was estimated using the formula A = max I<~(xi, yi) - ~o(xi, yi) r ~< ~' where 
e = 0.001. 

The method proposed not only makes it possible to obtain the solutions in an analytical form (we found 
polynomial solutions of the canonical equations of mathematical physics of elliptic, parabolic, and hyperbolic 
types, which depend on the spatial coordinates x, y, and z, and the time t [2-4]), but also significantly 
decreases the dimensionality of the algebraic system of equations relative to unknown coefficients as compared 
with the finite-difference and finite-element methods, since the approximation of the solution is constructed 
only at the boundary. Using the global and local basic functions found here, one can solve a wide range 
of both linear and nonlinear problems [18] (using, for example, linearization methods) of mechanics and 
mathematical physics. Biharmonic and harmonic polynomials can be applied to solve a number of problems 
of hydromechanics, electrostatics, and elasticity theory (in particular, torsion and bending of prismatic bodies, 
bending of membranes and plates). 
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